HAPTIC INTERFACE ON MEASURED DATA FOR EPIDURAL SIMULATION

This source preferred by Venky Dubey

Authors: Vaughan, N., Dubey, V.N., Wee, M.Y.K. and Isaacs, R.

Start date: 12 August 2012

Journal: asmedigitalcollection.asme.org

Publisher: ASME

Place of Publication: asmedigitalcollection.asme.org

This data was imported from Scopus:

Authors: Vaughan, N., Dubey, V.N., Wee, M.Y.K. and Isaacs, R.

Journal: Proceedings of the ASME Design Engineering Technical Conference

Volume: 2

Issue: PARTS A AND B

Pages: 13-17

ISBN: 9780791845011

DOI: 10.1115/DETC2012-70891

This paper presents a haptic device with 3D computer graphics as part of a high fidelity medical epidural simulator development program. The haptic device is used as an input to move the needle in 3D, and also to generate force feedback to the user during insertion. A needle insertion trial was conducted on a porcine cadaver to obtain force data. The data generated from this trial was used to recreate the feeling of epidural insertion in the simulator. The interaction forces have been approximated to the resultant force obtained during the trial representing the force generated by the haptic device. The haptic device is interfaced with the 3D graphics for visualization. As the haptic stylus is moved, the needle moves on the screen and the depth of the needle tip indicates which tissue layer is being penetrated. Different forces are generated by the haptic device for each tissue layer as the epidural needle is inserted. As the needle enters the epidural space, the force drops to indicate loss of resistance. Copyright © 2012 by ASME.

This data was imported from Web of Science (Lite):

Authors: Vaughan, N., Dubey, V.N., Wee, M.Y.K., Isaacs, R. and ASME

Journal: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 2, PTS A AND B

Pages: 13-+

ISBN: 978-0-7918-4501-1

The data on this page was last updated at 04:45 on September 21, 2017.