From space syntax to space semantics: A behaviorally and perceptually oriented methodology for the efficient description of the geometry and topology of environments

This source preferred by Jan Wiener

Authors: Franz, G. and Wiener, J.M.

Journal: Environment & Planning B: Planning and Design

Volume: 35

Pages: 574-592

ISSN: 0265-8135

DOI: 10.1068/b33050

Human spatial behavior and experience cannot be investigated independently from the shape and configuration of environments. Therefore, comparative studies in architectural psychology and spatial cognition would clearly benefit from operationalizations of space that provide a common denominator for capturing its behavioral and psychologically relevant properties. This paper presents theoretical and methodological issues arising from the practical application of isovist-based graphs for the analysis of architectural spaces. Based on recent studies exploring the influence of spatial form and structure on behavior and experience in virtual environments, the following topics are discussed: (1) the derivation and empirical verification of meaningful descriptor variables on the basis of classic qualitative theories of environmental psychology relating behavior and experience to spatial properties; (2) methods to select reference points for the analysis of architectural spaces at a local level; furthermore, based on two experiments exploring the phenomenal conception of the spatial structure of architectural environments, formalized strategies for (3) the selection of reference points at a global level, and for (4), their integration into a sparse yet plausible comprehensive graph structure, are proposed. Taken together, a well formalized and psychologically oriented methodology for the efficient description of spatial properties of environments at the architectural scale level is outlined. This method appears useful for a wide range of applications, ranging from abstract architectural analysis over behavioral experiments to studies on mental representations in cognitive science.

This data was imported from Scopus:

Authors: Franz, G. and Wiener, J.M.

Journal: Environment and Planning B: Planning and Design

Volume: 35

Issue: 4

Pages: 574-592

ISSN: 0265-8135

DOI: 10.1068/b33050

Human spatial behavior and experience cannot be investigated independently from the shape and configuration of environments. Therefore, comparative studies in architectural psychology and spatial cognition would clearly benefit from operationalizations of space that provide a common denominator for capturing its behavioral and psychologically relevant properties. This paper presents theoretical and methodological issues arising from the practical application of isovist-based graphs for the analysis of architectural spaces. Based on recent studies exploring the influence of spatial form and structure on behavior and experience in virtual environments, the following topics are discussed: (1) the derivation and empirical verification of meaningful descriptor variables on the basis of classic qualitative theories of environmental psychology relating behavior and experience to spatial properties; (2) methods to select reference points for the analysis of architectural spaces at a local level; furthermore, based on two experiments exploring the phenomenal conception of the spatial structure of architectural environments, formalized strategies for (3) the selection of reference points at a global level, and for (4), their integration into a sparse yet plausible comprehensive graph structure, are proposed. Taken together, a well formalized and psychologically oriented methodology for the efficient description of spatial properties of environments at the architectural scale level is outlined. This method appears useful for a wide range of applications, ranging from abstract architectural analysis over behavioral experiments to studies on mental representations in cognitive science.

The data on this page was last updated at 04:47 on December 17, 2017.