Real-time informative laryngoscopic frame classification with pre-trained convolutional neural networks

Authors: Galdran, A., Costa, P. and Campilho, A.

Journal: Proceedings - International Symposium on Biomedical Imaging

Volume: 2019-April

Pages: 87-90

eISSN: 1945-8452

ISBN: 9781538636411

ISSN: 1945-7928

DOI: 10.1109/ISBI.2019.8759511

Abstract:

Visual exploration of the larynx represents a relevant technique for the early diagnosis of laryngeal disorders. However, visualizing an endoscopy for finding abnormalities is a time-consuming process, and for this reason much research has been dedicated to the automatic analysis of endoscopic video data. In this work we address the particular task of discriminating among informative laryngoscopic frames and those that carry insufficient diagnostic information. In the latter case, the goal is also to determine the reason for this lack of information. To this end, we analyze the possibility of training three different state-of-the-art Convolutional Neural Networks, but initializing their weights from configurations that have been previously optimized for solving natural image classification problems. Our findings show that the simplest of these three architectures not only is the most accurate (outperforming previously proposed techniques), but also the fastest and most efficient, with the lowest inference time and minimal memory requirements, enabling real-time application and deployment in portable devices.

Source: Scopus

REAL-TIME INFORMATIVE LARYNGOSCOPIC FRAME CLASSIFICATION WITH PRE-TRAINED CONVOLUTIONAL NEURAL NETWORKS

Authors: Galdran, A., Costa, P., Carnpilho, A. and IEEE

Journal: 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019)

Pages: 87-90

ISSN: 1945-7928

Source: Web of Science (Lite)