A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

Authors: Rostami, S. and Shenfield, A.

http://eprints.bournemouth.ac.uk/24261/

Journal: Soft Computing

ISSN: 1432-7643

DOI: 10.1007/s00500-016-2227-6

The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a non-elitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In the original CMA-PAES, a solution is selected as a parent for the next population using an elitist adaptive grid archiving (AGA) scheme derived from the Pareto Archived Evolution Strategy (PAES). In contrast, a multi-tiered AGA scheme to populate the archive using an adaptive grid for each level of non-dominated solutions in the considered candidate population is proposed. The new selection scheme improves the performance of the CMA-PAES as shown using benchmark functions from the ZDT, CEC09, and DTLZ test suite in a comparison against the (μ+λ) μ λ Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES). In comparison with MO-CMA-ES, the experimental results show that the proposed algorithm offers up to a 69 % performance increase according to the Inverse Generational Distance (IGD) metric.

This data was imported from Scopus:

Authors: Rostami, S. and Shenfield, A.

http://eprints.bournemouth.ac.uk/24261/

Journal: Soft Computing

Volume: 21

Issue: 17

Pages: 4963-4979

eISSN: 1433-7479

ISSN: 1432-7643

DOI: 10.1007/s00500-016-2227-6

© 2016, The Author(s). The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a non-elitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In the original CMA-PAES, a solution is selected as a parent for the next population using an elitist adaptive grid archiving (AGA) scheme derived from the Pareto Archived Evolution Strategy (PAES). In contrast, a multi-tiered AGA scheme to populate the archive using an adaptive grid for each level of non-dominated solutions in the considered candidate population is proposed. The new selection scheme improves the performance of the CMA-PAES as shown using benchmark functions from the ZDT, CEC09, and DTLZ test suite in a comparison against the (μ+ λ) Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES). In comparison with MO-CMA-ES, the experimental results show that the proposed algorithm offers up to a 69 % performance increase according to the Inverse Generational Distance (IGD) metric.

This source preferred by Shahin Rostami

This data was imported from Web of Science (Lite):

Authors: Rostami, S. and Shenfield, A.

http://eprints.bournemouth.ac.uk/24261/

Journal: SOFT COMPUTING

Volume: 21

Issue: 17

Pages: 4963-4979

eISSN: 1433-7479

ISSN: 1432-7643

DOI: 10.1007/s00500-016-2227-6

The data on this page was last updated at 04:42 on September 24, 2017.