Chickpea (Cicer arietinum L.) cytogenetics, genetic diversity and breeding
Authors: Raina, A., Khan, S., Wani, M.R., Laskar, R.A. and Mushtaq, W.
Volume: 7
Pages: 53-112
DOI: 10.1007/978-3-030-23400-3_3
Abstract:Climate change, depleting natural resources, declining arable land and sky-high population represent the main obstacles to the attainment of global food security. Therefore, to make a significant breakthrough in the food production and to combat global food insecurity, sustainable intensification of the agricultural production through low-input agriculture and development of cultivar with improved yield and adaptability is required. By traditional and modern plant breeding methods, breeding of pulses, cereals, and other important food crops, especially chickpea, can be accomplished by exploiting available genetic diversity. Chickpea and other pulse crops are important foods in many nations and play a vital role in the diet of malnourished populations world wide. Globally, chickpea is mainly grown in developing countries, accounting for ~97% of world area and 96% of world production. At present the average global yield of chickpea is 0.9 mt/ha, very low comparedto its estimated potential of 6 mt/ha under favorable growthconditions. The main constraints that limit desired goals of chick peaproductivity include low genetic variability, low and unstable yield and low resistance to biotic and abiotic stresses. Chickpea being a self-pollinated crop harbors low genetic variability. Mutation breeding is the logical tool to create variability in a crop species in a very short span of time, as compared to breeding methods. This chapter cover sorigin, classification, cytogenetics, germplasm and breeding methods for chickpea improvement.
Source: Scopus