A probabilistic approach to structural change prediction in evolving social networks

Authors: Juszczyszyn, K., Gonczarek, A., Tomczak, J.M., Musial, K. and Budka, M.

Journal: Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012

Pages: 996-1001

DOI: 10.1109/ASONAM.2012.173

Abstract:

We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server. © 2012 IEEE.

https://eprints.bournemouth.ac.uk/20437/

Source: Scopus

A Probabilistic Approach to Structural Change Prediction in Evolving Social Networks

Authors: Juszczyszyn, K., Gonczarek, A., Tomczak, J.M., Musial, K. and Budka, M.

Journal: 2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM)

Pages: 996-1001

ISBN: 978-1-4673-2497-7

DOI: 10.1109/ASONAM.2012.173

https://eprints.bournemouth.ac.uk/20437/

Source: Web of Science (Lite)

A probabilistic approach to structural change prediction in evolving social networks

Authors: Juszczyszyn, K., Gonczarek, A., Tomczak, J.M., Musial, K. and Budka, M.

Pages: 996-1001

DOI: 10.1109/ASONAM.2012.173

https://eprints.bournemouth.ac.uk/20437/

http://www.scopus.com/inward/record.url?eid=2-s2.0-84874238598&partnerID=40&md5=3b04d0bc1d493643106baa8d17d94d33

Source: Manual

Preferred by: Marcin Budka

A Probabilistic Approach to Structural Change Prediction in Evolving Social Networks.

Authors: Juszczyszyn, K., Gonczarek, A., Tomczak, J.M., Musial, K. and Budka, M.

Journal: ASONAM

Pages: 996-1001

Publisher: IEEE Computer Society

ISBN: 978-0-7695-4799-2

DOI: 10.1109/ASONAM.2012.173

https://eprints.bournemouth.ac.uk/20437/

https://ieeexplore.ieee.org/xpl/conhome/6423126/proceeding

Source: DBLP

Probabilistic Approach to Structural Change Prediction in Evolving Social Networks

Authors: Juszczyszyn, K., Gonczarek, A., Tomczak, J., Musial, K. and Budka, M.

Conference: International Workshop on Complex Social Network Analysis (CSNA 2012) co-located with International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012)

Abstract:

We propose a predictive model of structural changes in elementary subgraphs of social network based on Mixture of Markov Chains. The model is trained and verified on a dataset from a large corporate social network analyzed in short, one day-long time windows, and reveals distinctive patterns of evolution of connections on the level of local network topology. We argue that the network investigated in such short timescales is highly dynamic and therefore immune to classic methods of link prediction and structural analysis, and show that in the case of complex networks, the dynamic subgraph mining may lead to better prediction accuracy. The experiments were carried out on the logs from the Wroclaw University of Technology mail server.

https://eprints.bournemouth.ac.uk/20437/

Source: BURO EPrints