Incremental learning based on growing Gaussian mixture models
Authors: Bouchachia, A. and Vanaret, C.
Journal: Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011
Volume: 2
Pages: 47-52
ISBN: 9780769546070
DOI: 10.1109/ICMLA.2011.79
Abstract:Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided. © 2011 IEEE.
Source: Scopus
Preferred by: Hamid Bouchachia
Incremental Learning Based on Growing Gaussian Mixture Models.
Authors: Bouchachia, A. and Vanaret, C.
Editors: Chen, X.-W., Dillon, T.S., Ishibuchi, H., Pei, J., Wang, H. and Wani, M.A.
Journal: ICMLA (2)
Pages: 47-52
Publisher: IEEE Computer Society
DOI: 10.1109/ICMLA.2011.79
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6146931
Source: DBLP