Rolling contact fatigue performance of detonation gun coated elements

This source preferred by Mark Hadfield

Authors: Ahmed, R. and Hadfield, M.

Journal: Tribology International

Volume: 30

Pages: 129-137

ISSN: 0301-679X

DOI: 10.1016/0301-679X(96)00036-9

Rolling contact fatigue performance of thermal spray coatings has been investigated using an experimental approach. A modified four ball machine which simulates a rolling element bearing was used to examine the coating performance and failure modes in a conventional steel ball bearing and hybrid ceramic bearing configurations. Tungsten carbide (WC-15%Co) and aluminium oxide (Al2O3) were thermally sprayed using a super D-Gun (SDG2040) on M-50 bearing steel substrate in the geometrical shape of a cone. A coated cone replaced the upper ball that contacts with three lower balls. The rolling contact fatigue (RCF) tests were performed under immersed lubricated conditions using two different lubricants. Fatigue failure modes were observed using a scanning electron microscope. Microhardness measurements of the coating and the substrate and elasto-hydrodynamic fluid film thickness results are included. The results show the requirement for significant optimization of the coating before use in rolling element bearing applications. The coating was fractured in a delamination mode. Test results show an optimization in coating process is required before these coatings can be used for rolling contact applications. WC-Co coatings perform better than Al2O3 coatings in rolling contact.

This data was imported from Scopus:

Authors: Ahmed, R. and Hadfield, M.

Journal: Tribology International

Volume: 30

Issue: 2

Pages: 129-137

ISSN: 0301-679X

DOI: 10.1016/0301-679X(96)00036-9

Rolling contact fatigue performance of thermal spray coatings has been investigated using an experimental approach. A modified four ball machine which simulates a rolling element bearing was used to examine the coating performance and failure modes in a conventional steel ball bearing and hybrid ceramic bearing configurations. Tungsten carbide (WC-15%Co) and aluminium oxide (Al2O3) were thermally sprayed using a super D-Gun (SDG2040) on M-50 bearing steel substrate in the geometrical shape of a cone. A coated cone replaced the upper ball that contacts with three lower balls. The rolling contact fatigue (RCF) tests were performed under immersed lubricated conditions using two different lubricants. Fatigue failure modes were observed using a scanning electron microscope. Microhardness measurements of the coating and the substrate and elasto-hydrodynamic fluid film thickness results are included. The results show the requirement for significant optimization of the coating before use in rolling element bearing applications. The coating was fractured in a delamination mode. Test results show an optimization in coating process is required before these coatings can be used for rolling contact applications. WC-Co coatings perform better than Al2O3 coatings in rolling contact. Copyright © 1996 Elsevier Science Ltd.

The data on this page was last updated at 05:13 on February 15, 2020.