Antioxidant thymoquinone and eugenol alleviate TiO<inf>2</inf> nanoparticle-induced toxicity in human blood cells in vitro
Authors: Wani, M.R. and Shadab, G.G.H.A.
Journal: Toxicology Mechanisms and Methods
Volume: 31
Issue: 8
Pages: 619-629
eISSN: 1537-6524
ISSN: 1537-6516
DOI: 10.1080/15376516.2021.1949083
Abstract:Titanium dioxide (TiO2) nanoparticles (NPs) are used extensively in a variety of commercial, industrial, and medical products, due to which human exposure is inevitable. This study aimed to explore the potential of eugenol and thymoquinone (TQ), two well-known antioxidants, in counteracting the NP-induced toxicity in human blood cells in vitro. Fresh lymphocytes and erythrocytes were isolated from volunteer human blood donors and incubated with 50 μg/mL of TiO2 NPs in the presence and absence of 50 μM of TQ and 20 μg/mL of eugenol for 3 h. Results showed that NP-treatment-induced hemolysis, oxidative stress, lactate dehydrogenase (LDH) leakage, and reduced ATPase activity in the erythrocytes. In the lymphocytes treated with NPs alone (50 μg/mL), cytotoxicity in MTT assay and DNA damage in comet assay were observed; in addition, mitochondrial membrane potential collapsed and ADP/ATP ratio increased indicating mitochondrial function impairment. However, in the presence of antioxidants, all these NP-induced changes were mitigated significantly. The results were more significant when both antioxidants eugenol and TQ were given together. Thus, it seems that antioxidants eugenol and TQ can be used as a protective agent against TiO2 NP-induced toxicity.
Source: Scopus
Antioxidant thymoquinone and eugenol alleviate TiO2 nanoparticle-induced toxicity in human blood cells in vitro.
Authors: Wani, M.R. and Shadab, G.G.H.A.
Journal: Toxicol Mech Methods
Volume: 31
Issue: 8
Pages: 619-629
eISSN: 1537-6524
DOI: 10.1080/15376516.2021.1949083
Abstract:Titanium dioxide (TiO2) nanoparticles (NPs) are used extensively in a variety of commercial, industrial, and medical products, due to which human exposure is inevitable. This study aimed to explore the potential of eugenol and thymoquinone (TQ), two well-known antioxidants, in counteracting the NP-induced toxicity in human blood cells in vitro. Fresh lymphocytes and erythrocytes were isolated from volunteer human blood donors and incubated with 50 μg/mL of TiO2 NPs in the presence and absence of 50 μM of TQ and 20 μg/mL of eugenol for 3 h. Results showed that NP-treatment-induced hemolysis, oxidative stress, lactate dehydrogenase (LDH) leakage, and reduced ATPase activity in the erythrocytes. In the lymphocytes treated with NPs alone (50 μg/mL), cytotoxicity in MTT assay and DNA damage in comet assay were observed; in addition, mitochondrial membrane potential collapsed and ADP/ATP ratio increased indicating mitochondrial function impairment. However, in the presence of antioxidants, all these NP-induced changes were mitigated significantly. The results were more significant when both antioxidants eugenol and TQ were given together. Thus, it seems that antioxidants eugenol and TQ can be used as a protective agent against TiO2 NP-induced toxicity.
Source: PubMed
Antioxidant thymoquinone and eugenol alleviate TiO<sub>2</sub> nanoparticle-induced toxicity in human blood cells <i>in vitro</i>.
Authors: Wani, M.R. and Shadab, G.G.H.A.
Journal: Toxicology mechanisms and methods
Volume: 31
Issue: 8
Pages: 619-629
eISSN: 1537-6524
ISSN: 1537-6516
DOI: 10.1080/15376516.2021.1949083
Abstract:Titanium dioxide (TiO2) nanoparticles (NPs) are used extensively in a variety of commercial, industrial, and medical products, due to which human exposure is inevitable. This study aimed to explore the potential of eugenol and thymoquinone (TQ), two well-known antioxidants, in counteracting the NP-induced toxicity in human blood cells in vitro. Fresh lymphocytes and erythrocytes were isolated from volunteer human blood donors and incubated with 50 μg/mL of TiO2 NPs in the presence and absence of 50 μM of TQ and 20 μg/mL of eugenol for 3 h. Results showed that NP-treatment-induced hemolysis, oxidative stress, lactate dehydrogenase (LDH) leakage, and reduced ATPase activity in the erythrocytes. In the lymphocytes treated with NPs alone (50 μg/mL), cytotoxicity in MTT assay and DNA damage in comet assay were observed; in addition, mitochondrial membrane potential collapsed and ADP/ATP ratio increased indicating mitochondrial function impairment. However, in the presence of antioxidants, all these NP-induced changes were mitigated significantly. The results were more significant when both antioxidants eugenol and TQ were given together. Thus, it seems that antioxidants eugenol and TQ can be used as a protective agent against TiO2 NP-induced toxicity.
Source: Europe PubMed Central