Detection of hyperpartisan news articles using natural language processing technique

Authors: Naredla, N.R. and Adedoyin, F.F.

Journal: International Journal of Information Management Data Insights

Volume: 2

Issue: 1

eISSN: 2667-0968

DOI: 10.1016/j.jjimei.2022.100064

Abstract:

Yellow journalism has increased the spread of hyperpartisan news on the internet. It is very difficult for online news article readers to distinguish hyperpartisan news articles from mainstream news articles. There is a need for an automated model that can detect hyperpartisan news on the internet and tag them as hyperpartisan so that it is very easy for readers to avoid that news. A hyperpartisan news detection article was developed by using three different natural language processing techniques named BERT, ELMo, and Word2vec. This research used the bi-article dataset published at SEMEVAL-2019. The ELMo word embeddings which are trained on a Random forest classifier has got an accuracy of 0.88, which is much better than other state of art models. The BERT and Word2vec models have got the same accuracy of 0.83. This research tried different sentence input lengths to BERT and proved that BERT can extract context from local words. Evidenced from the described ML models, this study will assist the governments, news’ readers, and other political stakeholders to detect any hyperpartisan news, and also helps policy to track, and regulate, misinformation about the political parties and their leaders.

https://eprints.bournemouth.ac.uk/36683/

Source: Scopus

Detection of Hyperpartisan news articles using natural language processing techniques

Authors: Adedoyin, F. and Naredla, N.R.

Journal: International Journal of Information Management Data Insights

Abstract:

Yellow journalism has increased the spread of hyperpartisan news on the internet. It is very difficult for online news article readers to distinguish hyperpartisan news articles from mainstream news articles. There is a need for an automated model that can detect hyperpartisan news on the internet and tag them as hyperpartisan so that it is very easy for readers to avoid that news. A hyperpartisan news detection article was developed by using three different natural language processing techniques named BERT, ELMo, and Word2vec. This research used the bi-article dataset published at SEMEVAL-2019. The ELMo word embeddings which are trained on a Random forest classifier has got an accuracy of 0.88, which is much better than other state of art models. The BERT and Word2vec models have got the same accuracy of 0.83. This research tried different sentence input lengths to BERT and proved that BERT can extract context from local words. Evidenced from the described ML models, this study will assist the governments, news’ readers, and other political stakeholders to detect any hyperpartisan news, and also helps policy to track, and regulate, misinformation about the political parties and their leaders.

https://eprints.bournemouth.ac.uk/36683/

Source: Manual

Detection of Hyperpartisan news articles using natural language processing techniques

Authors: Naredla, N.R. and Adedoyin, F.F.

Journal: International Journal of Information Management Data Insights

Volume: 2

Issue: 1

ISSN: 2667-0968

Abstract:

Yellow journalism has increased the spread of hyperpartisan news on the internet. It is very difficult for online news article readers to distinguish hyperpartisan news articles from mainstream news articles. There is a need for an automated model that can detect hyperpartisan news on the internet and tag them as hyperpartisan so that it is very easy for readers to avoid that news. A hyperpartisan news detection article was developed by using three different natural language processing techniques named BERT, ELMo, and Word2vec. This research used the bi-article dataset published at SEMEVAL-2019. The ELMo word embeddings which are trained on a Random forest classifier has got an accuracy of 0.88, which is much better than other state of art models. The BERT and Word2vec models have got the same accuracy of 0.83. This research tried different sentence input lengths to BERT and proved that BERT can extract context from local words. Evidenced from the described ML models, this study will assist the governments, news’ readers, and other political stakeholders to detect any hyperpartisan news, and also helps policy to track, and regulate, misinformation about the political parties and their leaders.

https://eprints.bournemouth.ac.uk/36683/

Source: BURO EPrints