Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study
Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: Scientific Reports
Volume: 12
Issue: 1
eISSN: 2045-2322
DOI: 10.1038/s41598-022-26585-1
Abstract:Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86–94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.
https://eprints.bournemouth.ac.uk/37958/
Source: Scopus
Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.
Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: Sci Rep
Volume: 12
Issue: 1
Pages: 22053
eISSN: 2045-2322
DOI: 10.1038/s41598-022-26585-1
Abstract:Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.
https://eprints.bournemouth.ac.uk/37958/
Source: PubMed
Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study
Authors: Murphy, M.A., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: SCIENTIFIC REPORTS
Volume: 12
Issue: 1
ISSN: 2045-2322
DOI: 10.1038/s41598-022-26585-1
https://eprints.bournemouth.ac.uk/37958/
Source: Web of Science (Lite)
Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study
Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: SCIENTIFIC REPORTS
Volume: 12
Issue: 1
ISSN: 2045-2322
DOI: 10.1038/s41598-022-26585-1
https://eprints.bournemouth.ac.uk/37958/
Source: Web of Science (Lite)
Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.
Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: Scientific reports
Volume: 12
Issue: 1
Pages: 22053
eISSN: 2045-2322
ISSN: 2045-2322
DOI: 10.1038/s41598-022-26585-1
Abstract:Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.
https://eprints.bournemouth.ac.uk/37958/
Source: Europe PubMed Central
Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.
Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.
Journal: Scientific Reports
Volume: 12
ISSN: 2045-2322
Abstract:Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.
https://eprints.bournemouth.ac.uk/37958/
Source: BURO EPrints