Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study

Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: Scientific Reports

Volume: 12

Issue: 1

eISSN: 2045-2322

DOI: 10.1038/s41598-022-26585-1

Abstract:

Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86–94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.

https://eprints.bournemouth.ac.uk/37958/

Source: Scopus

Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.

Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: Sci Rep

Volume: 12

Issue: 1

Pages: 22053

eISSN: 2045-2322

DOI: 10.1038/s41598-022-26585-1

Abstract:

Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.

https://eprints.bournemouth.ac.uk/37958/

Source: PubMed

Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study

Authors: Murphy, M.A., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: SCIENTIFIC REPORTS

Volume: 12

Issue: 1

ISSN: 2045-2322

DOI: 10.1038/s41598-022-26585-1

https://eprints.bournemouth.ac.uk/37958/

Source: Web of Science (Lite)

Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study

Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: SCIENTIFIC REPORTS

Volume: 12

Issue: 1

ISSN: 2045-2322

DOI: 10.1038/s41598-022-26585-1

https://eprints.bournemouth.ac.uk/37958/

Source: Web of Science (Lite)

Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.

Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: Scientific reports

Volume: 12

Issue: 1

Pages: 22053

eISSN: 2045-2322

ISSN: 2045-2322

DOI: 10.1038/s41598-022-26585-1

Abstract:

Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.

https://eprints.bournemouth.ac.uk/37958/

Source: Europe PubMed Central

Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.

Authors: Alt Murphy, M., Al-Shallawi, A., Sunnerhagen, K.S. and Pandyan, A.

Journal: Scientific Reports

Volume: 12

ISSN: 2045-2322

Abstract:

Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries.

https://eprints.bournemouth.ac.uk/37958/

Source: BURO EPrints