From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors

Authors: Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Martin Salvador, M., Schwan, S., Tsakonas, A. and Žliobaitė, I.

Conference: The Thirteenth International Symposium on Intelligent Data Analysis (IDA 2014)

Dates: 30 October-1 November 2014

Journal: Advances in Intelligent Data Analysis XIII

Volume: 8819

Pages: 49-60

Publisher: Springer

DOI: 10.1007/978-3-319-12571-8_5

Abstract:

Automatic data acquisition systems provide large amounts of streaming data generated by physical sensors. This data forms an input to computational models (soft sensors) routinely used for monitoring and control of industrial processes, traffic patterns, environment and natural hazards, and many more. The majority of these models assume that the data comes in a cleaned and pre-processed form, ready to be fed directly into a predictive model. In practice, to ensure appropriate data quality, most of the modelling efforts concentrate on preparing data from raw sensor readings to be used as model inputs. This study analyzes the process of data preparation for predictive models with streaming sensor data. We present the challenges of data preparation as a four-step process, identify the key challenges in each step, and provide recommendations for handling these issues. The discussion is focused on the approaches that are less commonly used, while, based on our experience, may contribute particularly well to solving practical soft sensor tasks. Our arguments are illustrated with a case study in the chemical production industry.

Source: Manual

Preferred by: Marcin Budka and Manuel Salvador

From Sensor Readings to Predictions: On the Process of Developing Practical Soft Sensors.

Authors: Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Salvador, M.M., Schwan, S., Tsakonas, A. and Zliobaite, I.

Editors: Blockeel, H., Leeuwen, M.V. and Vinciotti, V.

Journal: IDA

Volume: 8819

Pages: 49-60

Publisher: Springer

ISBN: 978-3-319-12570-1

https://doi.org/10.1007/978-3-319-12571-8

Source: DBLP