Optimal 3D surface reconstruction from multiview photographic images

Authors: Prakoonwit, S. and Benjamin, R.

Journal: 2009 International Conference on CyberWorlds, CW '09

Pages: 126-131

DOI: 10.1109/CW.2009.52

Abstract:

This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. © 2009 IEEE.

Source: Scopus

Optimal 3D surface reconstruction from multiview photographic images

Authors: Prakoonwit, S. and Benjamin, R.

Journal: 2009 INTERNATIONAL CONFERENCE ON CYBERWORLDS

Pages: 126-131

ISBN: 978-1-4244-4864-7

Source: Web of Science (Lite)