Towards automatic composition of multicomponent predictive systems
Authors: Martin Salvador, M., Budka, M. and Gabrys, B.
Journal: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume: 9648
Pages: 27-39
eISSN: 1611-3349
ISSN: 0302-9743
DOI: 10.1007/978-3-319-32034-2_3
Abstract:Automatic composition and parametrisation of multicomponent predictive systems (MCPSs) consisting of chains of data transformation steps is a challenging task. In this paper we propose and describe an extension to the Auto-WEKA software which now allows to compose and optimise such flexible MCPSs by using a sequence of WEKA methods. In the experimental analysis we focus on examining the impact of significantly extending the search space by incorporating additional hyperparameters of the models, on the quality of the found solutions. In a range of extensive experiments three different optimisation strategies are used to automatically compose MCPSs on 21 publicly available datasets. A comparison with previous work indicates that extending the search space improves the classification accuracy in the majority of the cases. The diversity of the found MCPSs are also an indication that fully and automatically exploiting different combinations of data cleaning and preprocessing techniques is possible and highly beneficial for different predictive models. This can have a big impact on high quality predictive models development, maintenance and scalability aspects needed in modern application and deployment scenarios.
https://eprints.bournemouth.ac.uk/23388/
Source: Scopus
Towards Automatic Composition of Multicomponent Predictive Systems
Authors: Salvador, M.M., Budka, M. and Gabrys, B.
Journal: HYBRID ARTIFICIAL INTELLIGENT SYSTEMS
Volume: 9648
Pages: 27-39
eISSN: 1611-3349
ISBN: 978-3-319-32033-5
ISSN: 0302-9743
DOI: 10.1007/978-3-319-32034-2_3
https://eprints.bournemouth.ac.uk/23388/
Source: Web of Science (Lite)
Towards automatic composition of multicomponent predictive systems
Authors: Salvador, Budka, M. and Gabrys, B.
Conference: 11th International Conference on Hybrid Artificial Intelligence Systems
Dates: 18-20 April 2016
Abstract:Automatic composition and parametrisation of multicomponent predictive systems (MCPSs) consisting of chains of data transformation steps is a challenging task. In this paper we propose and describe an extension to the Auto-WEKA software which now allows to compose and optimise such flexible MCPSs by using a sequence of WEKA methods. In the experimental analysis we focus on examining the impact of significantly extending the search space by incorporating additional hyperparameters of the models, on the quality of the found solutions. In a range of extensive experiments three different optimisation strategies are used to automatically compose MCPSs on 21 publicly available datasets. A comparison with previous work indicates that extending the search space improves the classification accuracy in the majority of the cases. The diversity of the found MCPSs are also an indication that fully and automatically exploiting different combinations of data cleaning and preprocessing techniques is possible and highly beneficial for different predictive models. This can have a big impact on high quality predictive models development, maintenance and scalability aspects needed in modern application and deployment scenarios.
https://eprints.bournemouth.ac.uk/23388/
Source: Manual
Towards Automatic Composition of Multicomponent Predictive Systems.
Authors: Salvador, M.M., Budka, M. and Gabrys, B.
Editors: Martínez-Álvarez, F., Troncoso, A., Quintián, H. and Corchado, E.
Journal: HAIS
Volume: 9648
Pages: 27-39
Publisher: Springer
ISBN: 978-3-319-32033-5
https://eprints.bournemouth.ac.uk/23388/
https://doi.org/10.1007/978-3-319-32034-2
Source: DBLP
Towards automatic composition of multicomponent predictive systems.
Authors: Salvador, M.M., Budka, M. and Gabrys, B.
Conference: 11th International Conference on Hybrid Artificial Intelligence Systems
Abstract:Automatic composition and parametrisation of multicomponent predictive systems (MCPSs) consisting of chains of data transformation steps is a challenging task. In this paper we propose and describe an extension to the Auto-WEKA software which now allows to compose and optimise such flexible MCPSs by using a sequence of WEKA methods. In the experimental analysis we focus on examining the impact of significantly extending the search space by incorporating additional hyperparameters of the models, on the quality of the found solutions. In a range of extensive experiments three different optimisation strategies are used to automatically compose MCPSs on 21 publicly available datasets. A comparison with previous work indicates that extending the search space improves the classification accuracy in the majority of the cases. The diversity of the found MCPSs are also an indication that fully and automatically exploiting different combinations of data cleaning and preprocessing techniques is possible and highly beneficial for different predictive models. This can have a big impact on high quality predictive models development, maintenance and scalability aspects needed in modern application and deployment scenarios.
https://eprints.bournemouth.ac.uk/23388/
Source: BURO EPrints