Effect of methanol on mitochondrial organization in zebrafish (Danio rerio) ovarian follicles

This source preferred by Tiantian Zhang

This data was imported from PubMed:

Authors: Spikings, E., Zampolla, T., Rawson, D., Wang, Y. and Zhang, T.

Journal: Theriogenology

Volume: 77

Issue: 1

Pages: 28-38

eISSN: 1879-3231

DOI: 10.1016/j.theriogenology.2011.07.009

Successful cryopreservation is usually measured in terms of cell survival. However, there may also be more subtle effects within cells that survive. Previous studies on zebrafish have produced evidence of mitochondrial DNA (mtDNA) damage in cryopreserved embryonic blastomeres and, after exposure to cryoprotectants, alterations in mtDNA replication in embryos and decreased mitochondrial membrane potential, mtDNA and ATP production in ovarian follicles. This study shows that the decreased ATP levels previously observed in stage III zebrafish ovarian follicles exposed to ≥3 M methanol persisted in those follicles that subsequently developed to stage IV. However, the decreased mtDNA levels were restored in those follicles. In order to determine whether mitochondrial distribution and/or their transport network was affected by the methanol exposure, immunocytochemistry analysis of tubulin and mitochondrial cytochrome c oxidase I (COX-I) was performed, along with phalloidin staining of polymerized actin. Neat arrangements of all proteins were observed in control follicles, with COX-I and tubulin being colocalized near granulosa cell nuclei, while actin formed hexagonal and/or polygonal structures nearer granulosa cell membranes and projected into the oocyte surface. Exposure to methanol (2 to 4 M) disrupted the COX-I and tubulin arrangements and the hexagonal and/or polygonal actin distribution and actin projections into the oocyte. These effects were still observed in those follicles that developed to stage IV, although the severity was reduced. In summary, the disruption to function and distribution of mitochondria in ovarian follicles exposed to >2 M methanol may be mediated via disruption of the mitochondrial transport system. Some recovery of this disruption may take place after methanol removal and subsequent follicle maturation.

This data was imported from Scopus:

Authors: Spikings, E., Zampolla, T., Rawson, D., Wang, Y. and Zhang, T.

Journal: Theriogenology

Volume: 77

Issue: 1

Pages: 28-38

ISSN: 0093-691X

DOI: 10.1016/j.theriogenology.2011.07.009

Successful cryopreservation is usually measured in terms of cell survival. However, there may also be more subtle effects within cells that survive. Previous studies on zebrafish have produced evidence of mitochondrial DNA (mtDNA) damage in cryopreserved embryonic blastomeres and, after exposure to cryoprotectants, alterations in mtDNA replication in embryos and decreased mitochondrial membrane potential, mtDNA and ATP production in ovarian follicles. This study shows that the decreased ATP levels previously observed in stage III zebrafish ovarian follicles exposed to ≥3 M methanol persisted in those follicles that subsequently developed to stage IV. However, the decreased mtDNA levels were restored in those follicles. In order to determine whether mitochondrial distribution and/or their transport network was affected by the methanol exposure, immunocytochemistry analysis of tubulin and mitochondrial cytochrome c oxidase I (COX-I) was performed, along with phalloidin staining of polymerized actin. Neat arrangements of all proteins were observed in control follicles, with COX-I and tubulin being colocalized near granulosa cell nuclei, while actin formed hexagonal and/or polygonal structures nearer granulosa cell membranes and projected into the oocyte surface. Exposure to methanol (2 to 4 M) disrupted the COX-I and tubulin arrangements and the hexagonal and/or polygonal actin distribution and actin projections into the oocyte. These effects were still observed in those follicles that developed to stage IV, although the severity was reduced. In summary, the disruption to function and distribution of mitochondria in ovarian follicles exposed to > 2 M methanol may be mediated via disruption of the mitochondrial transport system. Some recovery of this disruption may take place after methanol removal and subsequent follicle maturation. © 2012 Elsevier Inc.

This data was imported from Web of Science (Lite):

Authors: Spikings, E., Zarnpolla, T., Rawson, D., Wang, Y. and Zhang, T.

Journal: THERIOGENOLOGY

Volume: 77

Issue: 1

Pages: 28-38

ISSN: 0093-691X

DOI: 10.1016/j.theriogenology.2011.07.009

This data was imported from Europe PubMed Central:

Authors: Spikings, E., Zampolla, T., Rawson, D., Wang, Y. and Zhang, T.

Journal: Theriogenology

Volume: 77

Issue: 1

Pages: 28-38

eISSN: 1879-3231

ISSN: 0093-691X

Successful cryopreservation is usually measured in terms of cell survival. However, there may also be more subtle effects within cells that survive. Previous studies on zebrafish have produced evidence of mitochondrial DNA (mtDNA) damage in cryopreserved embryonic blastomeres and, after exposure to cryoprotectants, alterations in mtDNA replication in embryos and decreased mitochondrial membrane potential, mtDNA and ATP production in ovarian follicles. This study shows that the decreased ATP levels previously observed in stage III zebrafish ovarian follicles exposed to ≥3 M methanol persisted in those follicles that subsequently developed to stage IV. However, the decreased mtDNA levels were restored in those follicles. In order to determine whether mitochondrial distribution and/or their transport network was affected by the methanol exposure, immunocytochemistry analysis of tubulin and mitochondrial cytochrome c oxidase I (COX-I) was performed, along with phalloidin staining of polymerized actin. Neat arrangements of all proteins were observed in control follicles, with COX-I and tubulin being colocalized near granulosa cell nuclei, while actin formed hexagonal and/or polygonal structures nearer granulosa cell membranes and projected into the oocyte surface. Exposure to methanol (2 to 4 M) disrupted the COX-I and tubulin arrangements and the hexagonal and/or polygonal actin distribution and actin projections into the oocyte. These effects were still observed in those follicles that developed to stage IV, although the severity was reduced. In summary, the disruption to function and distribution of mitochondria in ovarian follicles exposed to >2 M methanol may be mediated via disruption of the mitochondrial transport system. Some recovery of this disruption may take place after methanol removal and subsequent follicle maturation.

The data on this page was last updated at 13:55 on February 25, 2020.