Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 °C using controlled slow cooling

This source preferred by Tiantian Zhang

This data was imported from PubMed:

Authors: Zhang, T., Rawson, D.M., Tosti, L. and Carnevali, O.

Journal: Cryobiology

Volume: 56

Issue: 2

Pages: 138-143

eISSN: 1090-2392

DOI: 10.1016/j.cryobiol.2008.01.002

This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk mobilisation.

This data was imported from Scopus:

Authors: Zhang, T., Rawson, D.M., Tosti, L. and Carnevali, O.

Journal: Cryobiology

Volume: 56

Issue: 2

Pages: 138-143

eISSN: 1090-2392

ISSN: 0011-2240

DOI: 10.1016/j.cryobiol.2008.01.002

This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 °C using controlled slow cooling. Stage III oocytes (>0.5 mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2 M DMSO (both prepared in Hank's medium) for 30 min at 22 °C before being loaded into 0.5 ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10 min, and thawed by immersing straws into a 27 °C water bath for 10 s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 °C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4 MβNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5 min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2 M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 °C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2 M DMSO and 2 M methanol. Trypan blue staining showed that 63.0 ± 11.3% and 72.7 ± 5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30 min at 22 °C, respectively, whilst 14.9 ± 2.6% and 1.4 ± 0.8% stayed intact after freezing in DMSO and methanol to -196 °C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk mobilisation. © 2008 Elsevier Inc. All rights reserved.

This data was imported from Web of Science (Lite):

Authors: Zhang, T., Rawson, D.M., Tosti, L. and Carnevali, O.

Journal: CRYOBIOLOGY

Volume: 56

Issue: 2

Pages: 138-143

ISSN: 0011-2240

DOI: 10.1016/j.cryobiol.2008.01.002

This data was imported from Europe PubMed Central:

Authors: Zhang, T., Rawson, D.M., Tosti, L. and Carnevali, O.

Journal: Cryobiology

Volume: 56

Issue: 2

Pages: 138-143

eISSN: 1090-2392

ISSN: 0011-2240

This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk mobilisation.

The data on this page was last updated at 05:09 on February 24, 2020.