Study on fish embryo responses to the treatment of cryoprotective chemicals using impedance spectroscopy

This source preferred by Tiantian Zhang

This data was imported from PubMed:

Authors: Wang, R.Y., Zhang, T., Bao, Q. and Rawson, D.M.

Journal: Eur Biophys J

Volume: 35

Issue: 3

Pages: 224-230

ISSN: 0175-7571

DOI: 10.1007/s00249-005-0027-5

Investigations using electrical impedance spectroscopy to measure the responses of fish embryos to the cryoprotective chemicals, methanol and dimethyl sulphoxide (DMSO), were carried out. Zebrafish (Danio rerio) embryos were used as a model to study the newly proposed technique. The normalised permittivity and conductivity changes of the embryos were measured continuously over a 20-min period in a customised embryo-holding chamber. The normalised permittivity and conductivity spectra were obtained during embryo exposure to different concentrations of methanol (1.0, 2.0 and 3.0 M) and DMSO (0.5, 1.0 and 2.0 M) solutions. The results showed significant permittivity and conductivity changes after embryo exposure to methanol and DMSO at the optimum embryo loading level (six embryos). Embryos in different concentrations of methanol and DMSO also resulted in quantitative responses shown in the normalised permittivity and conductivity spectra. The results demonstrated that fish embryo membrane permeability to cryoprotective chemicals could be monitored in real-time. The measurement of permittivity at a lower frequency range (10-10(3) Hz) and conductivity at a higher frequency range (10(4)-10(6) Hz) during fish embryo exposure to cryoprotective chemicals using impedance spectroscopy can be used as a new tool for the fast screening of most effective cryoprotective chemicals. The results from the present study also demonstrated the possibility of quantifying the level of cryoprotective chemicals penetrating the fish embryos.

This data was imported from Scopus:

Authors: Wang, R.Y., Zhang, T., Bao, Q. and Rawson, D.M.

Journal: European Biophysics Journal

Volume: 35

Issue: 3

Pages: 224-230

ISSN: 0175-7571

DOI: 10.1007/s00249-005-0027-5

Investigations using electrical impedance spectroscopy to measure the responses of fish embryos to the cryoprotective chemicals, methanol and dimethyl sulphoxide (DMSO), were carried out. Zebrafish (Danio rerio) embryos were used as a model to study the newly proposed technique. The normalised permittivity and conductivity changes of the embryos were measured continuously over a 20-min period in a customised embryo-holding chamber. The normalised permittivity and conductivity spectra were obtained during embryo exposure to different concentrations of methanol (1.0, 2.0 and 3.0 M) and DMSO (0.5, 1.0 and 2.0 M) solutions. The results showed significant permittivity and conductivity changes after embryo exposure to methanol and DMSO at the optimum embryo loading level (six embryos). Embryos in different concentrations of methanol and DMSO also resulted in quantitative responses shown in the normalised permittivity and conductivity spectra. The results demonstrated that fish embryo membrane permeability to cryoprotective chemicals could be monitored in real-time. The measurement of permittivity at a lower frequency range (10-103 Hz) and conductivity at a higher frequency range (104-106 Hz) during fish embryo exposure to cryoprotective chemicals using impedance spectroscopy can be used as a new tool for the fast screening of most effective cryoprotective chemicals. The results from the present study also demonstrated the possibility of quantifying the level of cryoprotective chemicals penetrating the fish embryos. © EBSA 2005.

This data was imported from Europe PubMed Central:

Authors: Wang, R.Y., Zhang, T., Bao, Q. and Rawson, D.M.

Journal: European biophysics journal : EBJ

Volume: 35

Issue: 3

Pages: 224-230

eISSN: 1432-1017

ISSN: 0175-7571

Investigations using electrical impedance spectroscopy to measure the responses of fish embryos to the cryoprotective chemicals, methanol and dimethyl sulphoxide (DMSO), were carried out. Zebrafish (Danio rerio) embryos were used as a model to study the newly proposed technique. The normalised permittivity and conductivity changes of the embryos were measured continuously over a 20-min period in a customised embryo-holding chamber. The normalised permittivity and conductivity spectra were obtained during embryo exposure to different concentrations of methanol (1.0, 2.0 and 3.0 M) and DMSO (0.5, 1.0 and 2.0 M) solutions. The results showed significant permittivity and conductivity changes after embryo exposure to methanol and DMSO at the optimum embryo loading level (six embryos). Embryos in different concentrations of methanol and DMSO also resulted in quantitative responses shown in the normalised permittivity and conductivity spectra. The results demonstrated that fish embryo membrane permeability to cryoprotective chemicals could be monitored in real-time. The measurement of permittivity at a lower frequency range (10-10(3) Hz) and conductivity at a higher frequency range (10(4)-10(6) Hz) during fish embryo exposure to cryoprotective chemicals using impedance spectroscopy can be used as a new tool for the fast screening of most effective cryoprotective chemicals. The results from the present study also demonstrated the possibility of quantifying the level of cryoprotective chemicals penetrating the fish embryos.

The data on this page was last updated at 05:17 on May 25, 2020.