Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes

Authors: Plachinta, M., Zhang, T. and Rawson, D.M.

Journal: Cryo-Letters

Volume: 25

Issue: 6

Pages: 415-424

ISSN: 0143-2044

Abstract:

Cryopreservation of fish germ cells is an important measure in conservation of fish genetic material. Although investigations on cryopreservation of fish sperm and embryos have been carried out extensively, cryopreservation of fish oocytes has not been studied systematically. In the present study the toxicity of cryoprotectants to zebrafish (Danio rerio) oocytes was investigated. Commonly used cryoprotectants dimethyl sulfoxide (DMSO), methanol, ethylene glycol (EG), propylene glycol (PG), sucrose and glucose were studied. Stage III (vitellogenic), stage IV (maturation) and stage V (mature egg) zebrafish oocytes were incubated in Hank's medium containing different concentrations of cryoprotectants (0.25-4M) for 30min at room temperature. Three different tests were used to assess oocyte viability: trypan blue (TB) staining, thiazolyl blue (MTT) staining and in vitro maturation followed by observation of germinal vesicle breakdown (GVBD). Results showed that the toxic effect of cryoprotectant on oocytes generally increased with increasing concentration. MTT test was shown to be the least sensitive testing method and gave poor correlation to subsequent GVBD results. Sensitivity of vital tests increases in the order of MTT, TB and GVBD. GVBD test showed that cryoprotectant toxicity to stage III zebrafish oocytes increased in the order of methanol, PG, DMSO, EG, glucose and sucrose. No Observed Effect Concentrations (NOECs) for stage III oocytes were 2M, 1M, 1M, 0.5M, <0.25M and <0.25M for methanol, PG, DMSO, EG, glucose and sucrose respectively. TB test also showed that the toxicity of tested cryoprotectants increased in the same order. The sensitivity of oocytes to cryoprotectants appeared to increase with development stage with stage V oocytes being the most sensitive.

Source: Scopus

Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes.

Authors: Plachinta, M., Zhang, T. and Rawson, D.M.

Journal: Cryo Letters

Volume: 25

Issue: 6

Pages: 415-424

ISSN: 0143-2044

Abstract:

Cryopreservation of fish germ cells is an important measure in conservation of fish genetic material. Although investigations on cryopreservation of fish sperm and embryos have been carried out extensively, cryopreservation of fish oocytes has not been studied systematically. In the present study the toxicity of cryoprotectants to zebrafish (Danio rerio) oocytes was investigated. Commonly used cryoprotectants dimethyl sulfoxide (DMSO), methanol, ethylene glycol (EG), propylene glycol (PG), sucrose and glucose were studied. Stage III (vitellogenic), stage IV (maturation) and stage V (mature egg) zebrafish oocytes were incubated in Hank's medium containing different concentrations of cryoprotectants (0.25-4M) for 30 min at room temperature. Three different tests were used to assess oocyte viability: trypan blue (TB) staining, thiazolyl blue (MTT) staining and in vitro maturation followed by observation of germinal vesicle breakdown (GVBD). Results showed that the toxic effect of cryoprotectant on oocytes generally increased with increasing concentration. MTT test was shown to be the least sensitive testing method and gave poor correlation to subsequent GVBD results. Sensitivity of vital tests increases in the order of MTT, TB and GVBD. GVBD test showed that cryoprotectant toxicity to stage III zebrafish oocytes increased in the order of methanol, PG, DMSO, EG, glucose and sucrose. No Observed Effect Concentrations (NOECs) for stage III oocytes were 2M, 1M, 1M, 0.5M, less than 0.25M and less than 0.25M for methanol, PG, DMSO, EG, glucose and sucrose respectively. TB test also showed that the toxicity of tested cryoprotectants increased in the same order. The sensitivity of oocytes to cryoprotectants appeared to increase with development stage with stage V oocytes being the most sensitive.

Source: PubMed

Preferred by: Tiantian Zhang

Studies on cryoprotectant toxicity to zebrafish (Danio rerio) oocytes.

Authors: Plachinta, M., Zhang, T. and Rawson, D.M.

Journal: Cryo letters

Volume: 25

Issue: 6

Pages: 415-424

ISSN: 0143-2044

Abstract:

Cryopreservation of fish germ cells is an important measure in conservation of fish genetic material. Although investigations on cryopreservation of fish sperm and embryos have been carried out extensively, cryopreservation of fish oocytes has not been studied systematically. In the present study the toxicity of cryoprotectants to zebrafish (Danio rerio) oocytes was investigated. Commonly used cryoprotectants dimethyl sulfoxide (DMSO), methanol, ethylene glycol (EG), propylene glycol (PG), sucrose and glucose were studied. Stage III (vitellogenic), stage IV (maturation) and stage V (mature egg) zebrafish oocytes were incubated in Hank's medium containing different concentrations of cryoprotectants (0.25-4M) for 30 min at room temperature. Three different tests were used to assess oocyte viability: trypan blue (TB) staining, thiazolyl blue (MTT) staining and in vitro maturation followed by observation of germinal vesicle breakdown (GVBD). Results showed that the toxic effect of cryoprotectant on oocytes generally increased with increasing concentration. MTT test was shown to be the least sensitive testing method and gave poor correlation to subsequent GVBD results. Sensitivity of vital tests increases in the order of MTT, TB and GVBD. GVBD test showed that cryoprotectant toxicity to stage III zebrafish oocytes increased in the order of methanol, PG, DMSO, EG, glucose and sucrose. No Observed Effect Concentrations (NOECs) for stage III oocytes were 2M, 1M, 1M, 0.5M, less than 0.25M and less than 0.25M for methanol, PG, DMSO, EG, glucose and sucrose respectively. TB test also showed that the toxicity of tested cryoprotectants increased in the same order. The sensitivity of oocytes to cryoprotectants appeared to increase with development stage with stage V oocytes being the most sensitive.

Source: Europe PubMed Central