Real-time control of industrial manipulator vibration using artificial neural networks
Authors: Marcham, L.J., Rao, B.K.N., Noroozi, S. and Penson, R.P.
Journal: IEEE International Conference on Neural Networks - Conference Proceedings
Volume: 5
Pages: 2550-2554
Abstract:The work reported in this paper addresses the control of robot manipulator vibration, with the specific aim of achieving a greater degree of dynamic accuracy. An overview of existing work on the modelling of robot dynamics and neural control is reported. A model of the dynamics of a two degrees of freedom manipulator, inclusive of vibration, is presented and is used to train a time-delay neural network to learn the predicted end-vector vibration. The results are compared with experimental data taken from a PUMA562C industrial manipulator using laser interferometry. Control of an end-effector located, active compensator, based upon on-line training of an artificial neural network controller is discussed and recommendations which form the basis of further investigations, currently being undertaken, are presented.
Source: Scopus
Preferred by: Siamak Noroozi
Real-time control of industrial manipulator vibration using artificial neural networks
Authors: Marcham, L.J., Rao, B.K.N., Noroozi, S. and Penson, R.P.
Journal: 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6
Pages: 2550-2554
Source: Web of Science (Lite)