Validity and reliability of two field-based leg stiffness devices: Implications for practical use
Authors: Ruggiero, L., Dewhurst, S. and Bampouras, T.M.
Journal: Journal of Applied Biomechanics
Volume: 32
Issue: 4
Pages: 415-419
eISSN: 1543-2688
ISSN: 1065-8483
DOI: 10.1123/jab.2015-0297
Abstract:Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump Next® (Optojump) and Myotest Pro® (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r =.98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r =.81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.
Source: Scopus
Validity and Reliability of Two Field-Based Leg Stiffness Devices: Implications for Practical Use.
Authors: Ruggiero, L., Dewhurst, S. and Bampouras, T.M.
Journal: J Appl Biomech
Volume: 32
Issue: 4
Pages: 415-419
eISSN: 1543-2688
DOI: 10.1123/jab.2015-0297
Abstract:Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump NextR (Optojump) and Myotest ProR (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r = .98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r = .81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.
Source: PubMed
Validity and Reliability of Two Field-Based Leg Stiffness Devices: Implications for Practical Use
Authors: Ruggiero, L., Dewhurst, S. and Bampouras, T.M.
Journal: JOURNAL OF APPLIED BIOMECHANICS
Volume: 32
Issue: 4
Pages: 415-419
eISSN: 1543-2688
ISSN: 1065-8483
DOI: 10.1123/jab.2015-0297
Source: Web of Science (Lite)
Validity and Reliability of Two Field-Based Leg Stiffness Devices: Implications for Practical Use.
Authors: Ruggiero, L., Dewhurst, S. and Bampouras, T.M.
Journal: Journal of applied biomechanics
Volume: 34
Issue: 4
Pages: 415-419
Publisher: Human Kinetics Publishers, Inc.
ISSN: 1065-8483
DOI: 10.1123/jab.2015-0297
Abstract:Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump NextR (Optojump) and Myotest ProR (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r = .98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r = .81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.
Source: Manual
Validity and Reliability of Two Field-Based Leg Stiffness Devices: Implications for Practical Use.
Authors: Ruggiero, L., Dewhurst, S. and Bampouras, T.M.
Journal: Journal of applied biomechanics
Volume: 32
Issue: 4
Pages: 415-419
eISSN: 1543-2688
ISSN: 1065-8483
DOI: 10.1123/jab.2015-0297
Abstract:Leg stiffness is an important performance determinant in several sporting activities. This study evaluated the criterion-related validity and reliability of 2 field-based leg stiffness devices, Optojump NextR (Optojump) and Myotest ProR (Myotest) in different testing approaches. Thirty-four males performed, on 2 separate sessions, 3 trials of 7 maximal hops, synchronously recorded from a force platform (FP), Optojump and Myotest. Validity (Pearson's correlation coefficient, r; relative mean bias; 95% limits of agreement, 95%LoA) and reliability (coefficient of variation, CV; intraclass correlation coefficient, ICC; standard error of measurement, SEM) were calculated for first attempt, maximal attempt, and average across 3 trials. For all 3 methods, Optojump correlated highly to the FP (range r = .98-.99) with small bias (range 0.91-0.92, 95%LoA 0.86-0.98). Myotest demonstrated high correlation to FP (range r = .81-.86) with larger bias (range 1.92-1.93, 95%LoA 1.63-2.23). Optojump yielded a low CV (range 5.9% to 6.8%), high ICC (range 0.82-0.86), and SEM ranging 1.8-2.1 kN/m. Myotest had a larger CV (range 8.9% to 13.0%), moderate ICC (range 0.64-0.79), and SEM ranging from 6.3 to 8.9 kN/m. The findings present important information for these devices and support the use of a time-efficient single trial to assess leg stiffness in the field.
Source: Europe PubMed Central