Supercapacitance from cellulose and carbon nanotube nanocomposite fibers

Authors: Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A. and Eichhorn, S.J.

Journal: ACS Applied Materials and Interfaces

Volume: 5

Issue: 20

Pages: 9983-9990

eISSN: 1944-8252

ISSN: 1944-8244

DOI: 10.1021/am403622v

Abstract:

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol-1. They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g -1 at a current density of 10 A g-1, which increases to 145 F g-1 upon the addition of 6% of MWNTs. © 2013 American Chemical Society.

https://eprints.bournemouth.ac.uk/35417/

Source: Scopus

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.

Authors: Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A. and Eichhorn, S.J.

Journal: ACS Appl Mater Interfaces

Volume: 5

Issue: 20

Pages: 9983-9990

eISSN: 1944-8252

DOI: 10.1021/am403622v

Abstract:

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol(-1). They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g(-1) at a current density of 10 A g(-1), which increases to 145 F g(-1) upon the addition of 6% of MWNTs.

https://eprints.bournemouth.ac.uk/35417/

Source: PubMed

Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers

Authors: Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A. and Eichhorn, S.J.

Journal: ACS APPLIED MATERIALS & INTERFACES

Volume: 5

Issue: 20

Pages: 9983-9990

eISSN: 1944-8252

ISSN: 1944-8244

DOI: 10.1021/am403622v

https://eprints.bournemouth.ac.uk/35417/

Source: Web of Science (Lite)

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.

Authors: Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A. and Eichhorn, S.J.

Journal: ACS applied materials & interfaces

Volume: 5

Issue: 20

Pages: 9983-9990

eISSN: 1944-8252

ISSN: 1944-8244

DOI: 10.1021/am403622v

Abstract:

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol(-1). They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g(-1) at a current density of 10 A g(-1), which increases to 145 F g(-1) upon the addition of 6% of MWNTs.

https://eprints.bournemouth.ac.uk/35417/

Source: Europe PubMed Central

Supercapacitance from cellulose and carbon nanotube nanocomposite fibers.

Authors: Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., De Haro-Del Rio, D.A. and Eichhorn, S.J.

Journal: ACS Applied Materials and Interfaces

Volume: 5

Issue: 20

Pages: 9983-9990

ISSN: 1944-8244

Abstract:

Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravimetric analysis, transmission electron microscopy and Raman spectroscopy. It is demonstrated that the incorporated MWNTs reduce the activation energy of the oxidative stabilization of cellulose nanofibers from ∼230 to ∼180 kJ mol(-1). They also increase the crystallite size, structural order, and electrical conductivity of the activated CNFs (ACNFs). The surface area of the ACNFs increased upon addition of nanotubes which protrude from the fiber leading to a rougher surface. The ACNFs were used as the electrodes of a supercapacitor. The electrochemical capacitance of the ACNF derived from pure cellulose nanofibers is demonstrated to be 105 F g(-1) at a current density of 10 A g(-1), which increases to 145 F g(-1) upon the addition of 6% of MWNTs.

https://eprints.bournemouth.ac.uk/35417/

Source: BURO EPrints