Improving estimates of environmental change using multilevel regression models of Ellenberg indicator values

Authors: Carroll, T., Gillingham, P., Stafford, R., Bullock, J. and Diaz, A.

Editors: Holmes, S.

http://eprints.bournemouth.ac.uk/31236/

https://authorservices.wiley.com/api/pdf/fullArticle/15757615

Journal: Ecology and Evolution

Pages: 1-12

Publisher: John Wiley & Sons

eISSN: 2045-7758

DOI: 10.1002/ece3.4422

Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a semi-quantitative description of species‘ ecological requirements. Typically, point estimates of mean EIV scores are compared over space or time to infer differences in the environmental conditions structuring plant communities – particularly in resurvey studies where no historical environmental data are available. However, the use of point estimates as a basis for inference does not take into account variance among species EIVs within sampled plots, and gives equal weighting to means calculated from plots with differing numbers of species. Traditional methods are also vulnerable to inaccurate estimates where only incomplete species lists are available.

We present a set of multilevel (hierarchical) models – fitted with and without group-level predictors (for eg. habitat type) – to improve precision and accuracy of plot mean EIV scores, and to provide more reliable inference on changing environmental conditions over spatial and temporal gradients in resurvey studies. We compare multilevel model performance to GLMM’s fitted to point estimates of mean EIVs. We also test the reliability of this method to improve inferences with incomplete species lists in some or all sample plots.

Hierarchical modelling led to more accurate and precise estimates of plot-level differences in mean EIV scores between time-periods, particularly for datasets with incomplete records of species occurrence. Furthermore, hierarchical models revealed directional environmental change within ecological habitat types, which less precise estimates from GLMM’s of raw mean EIVs were inadequate to detect. The ability to compute separate residual variance and adjusted R^2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in multilevel models also allowed us to uncover a prominent role of hydrological differences as a driver of community compositional change in our case study, which traditional use of EIVs would fail to reveal.

Assessing environmental change underlying ecological communities is a vital issue in the face of accelerating anthropogenic change. We have demonstrated that multilevel modelling of EIVs allows for a nuanced estimation of such from plant assemblage data changes at local scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. Further, the ability of these methods to perform well with missing data should increase the total set of historical data which can be used to this end.

This data was imported from PubMed:

Authors: Carroll, T., Gillingham, P.K., Stafford, R., Bullock, J.M. and Diaz, A.

http://eprints.bournemouth.ac.uk/31236/

Journal: Ecol Evol

Volume: 8

Issue: 19

Pages: 9739-9750

ISSN: 2045-7758

DOI: 10.1002/ece3.4422

Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a semi-quantitative description of species' ecological requirements. Typically, point estimates of mean EIV scores are compared over space or time to infer differences in the environmental conditions structuring plant communities-particularly in resurvey studies where no historical environmental data are available. However, the use of point estimates as a basis for inference does not take into account variance among species EIVs within sampled plots and gives equal weighting to means calculated from plots with differing numbers of species. Traditional methods are also vulnerable to inaccurate estimates where only incomplete species lists are available.We present a set of multilevel (hierarchical) models-fitted with and without group-level predictors (e.g., habitat type)-to improve precision and accuracy of plot mean EIV scores and to provide more reliable inference on changing environmental conditions over spatial and temporal gradients in resurvey studies. We compare multilevel model performance to GLMMs fitted to point estimates of mean EIVs. We also test the reliability of this method to improve inferences with incomplete species lists in some or all sample plots. Hierarchical modeling led to more accurate and precise estimates of plot-level differences in mean EIV scores between time-periods, particularly for datasets with incomplete records of species occurrence. Furthermore, hierarchical models revealed directional environmental change within ecological habitat types, which less precise estimates from GLMMs of raw mean EIVs were inadequate to detect. The ability to compute separate residual variance and adjusted R2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in multilevel models also allowed us to uncover a prominent role of hydrological differences as a driver of community compositional change in our case study, which traditional use of EIVs would fail to reveal. Assessing environmental change underlying ecological communities is a vital issue in the face of accelerating anthropogenic change. We have demonstrated that multilevel modeling of EIVs allows for a nuanced estimation of such from plant assemblage data changes at local scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. Further, the ability of these methods to perform well with missing data should increase the total set of historical data which can be used to this end.

This data was imported from Scopus:

Authors: Carroll, T., Gillingham, P.K., Stafford, R., Bullock, J.M. and Diaz, A.

http://eprints.bournemouth.ac.uk/31236/

Journal: Ecology and Evolution

Volume: 8

Issue: 19

Pages: 9739-9750

eISSN: 2045-7758

DOI: 10.1002/ece3.4422

© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a semi-quantitative description of species’ ecological requirements. Typically, point estimates of mean EIV scores are compared over space or time to infer differences in the environmental conditions structuring plant communities—particularly in resurvey studies where no historical environmental data are available. However, the use of point estimates as a basis for inference does not take into account variance among species EIVs within sampled plots and gives equal weighting to means calculated from plots with differing numbers of species. Traditional methods are also vulnerable to inaccurate estimates where only incomplete species lists are available.We present a set of multilevel (hierarchical) models—fitted with and without group-level predictors (e.g., habitat type)—to improve precision and accuracy of plot mean EIV scores and to provide more reliable inference on changing environmental conditions over spatial and temporal gradients in resurvey studies. We compare multilevel model performance to GLMMs fitted to point estimates of mean EIVs. We also test the reliability of this method to improve inferences with incomplete species lists in some or all sample plots. Hierarchical modeling led to more accurate and precise estimates of plot-level differences in mean EIV scores between time-periods, particularly for datasets with incomplete records of species occurrence. Furthermore, hierarchical models revealed directional environmental change within ecological habitat types, which less precise estimates from GLMMs of raw mean EIVs were inadequate to detect. The ability to compute separate residual variance and adjusted R2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in multilevel models also allowed us to uncover a prominent role of hydrological differences as a driver of community compositional change in our case study, which traditional use of EIVs would fail to reveal. Assessing environmental change underlying ecological communities is a vital issue in the face of accelerating anthropogenic change. We have demonstrated that multilevel modeling of EIVs allows for a nuanced estimation of such from plant assemblage data changes at local scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. Further, the ability of these methods to perform well with missing data should increase the total set of historical data which can be used to this end.

The data on this page was last updated at 04:50 on December 18, 2018.