Standard methods for creating digital skeletal models using structure-from-motion photogrammetry

Authors: Morgan, B., Ford, A.L.J. and Smith, M.J.

Journal: American Journal of Physical Anthropology

Volume: 169

Issue: 1

Pages: 152-160

eISSN: 1096-8644

ISSN: 0002-9483

DOI: 10.1002/ajpa.23803

Abstract:

Objectives: This article assesses best practices for producing 3D digital cranial models through structure-from-motion (SfM) photogrammetry, and whether the metric accuracy and overall presentation of photogrammetric models are comparable to physical crania. It is intended to present a user-friendly standard method of creating accurate digital skeletal models using Agisoft PhotoScan. Materials and methods: Approximately 200 photographs were taken of three different crania, and were separated into series consisting of 50, 75, 100, 150, and approximately 200 photos. Forty-five cranial models were created using different photo series and a variety of PhotoScan settings. These models were assessed based on defined qualitative criteria, and model measurement estimates were compared with physical skeletal measurements using Bland–Altman plots. Results: The majority of all models (37/45) produced measurement estimates with mean differences of 2 mm or less regardless of PhotoScan settings, and therefore demonstrated high levels of agreement with the physical measurements. Models created with 150 photographs and on “high” PhotoScan settings scored the highest in terms of qualitative appearance in the shortest amount of time. Discussion: In PhotoScan, it is recommended to create cranial models using 150 photographs and “high” settings; this produces digital cranial models that are comparable to physical crania in both appearance and proportion. SfM photogrammetry is a convenient, noninvasive, and rapid 3D modeling tool that can be used in almost any setting to produce digital models, and following the guidelines established here will ensure that these models are metrically accurate.

https://eprints.bournemouth.ac.uk/32161/

Source: Scopus

Standard methods for creating digital skeletal models using structure-from-motion photogrammetry.

Authors: Morgan, B., Ford, A.L.J. and Smith, M.J.

Journal: Am J Phys Anthropol

Volume: 169

Issue: 1

Pages: 152-160

eISSN: 1096-8644

DOI: 10.1002/ajpa.23803

Abstract:

OBJECTIVES: This article assesses best practices for producing 3D digital cranial models through structure-from-motion (SfM) photogrammetry, and whether the metric accuracy and overall presentation of photogrammetric models are comparable to physical crania. It is intended to present a user-friendly standard method of creating accurate digital skeletal models using Agisoft PhotoScan. MATERIALS AND METHODS: Approximately 200 photographs were taken of three different crania, and were separated into series consisting of 50, 75, 100, 150, and approximately 200 photos. Forty-five cranial models were created using different photo series and a variety of PhotoScan settings. These models were assessed based on defined qualitative criteria, and model measurement estimates were compared with physical skeletal measurements using Bland-Altman plots. RESULTS: The majority of all models (37/45) produced measurement estimates with mean differences of 2 mm or less regardless of PhotoScan settings, and therefore demonstrated high levels of agreement with the physical measurements. Models created with 150 photographs and on "high" PhotoScan settings scored the highest in terms of qualitative appearance in the shortest amount of time. DISCUSSION: In PhotoScan, it is recommended to create cranial models using 150 photographs and "high" settings; this produces digital cranial models that are comparable to physical crania in both appearance and proportion. SfM photogrammetry is a convenient, noninvasive, and rapid 3D modeling tool that can be used in almost any setting to produce digital models, and following the guidelines established here will ensure that these models are metrically accurate.

https://eprints.bournemouth.ac.uk/32161/

Source: PubMed

Standard methods for creating digital skeletal models using structure‐from‐motion photogrammetry

Authors: Morgan, B., Smith, M. and Ford, A.

Journal: American journal of physical anthropology

Volume: 169

Issue: 1

Pages: 152-160

Publisher: Wiley-Blackwell

ISSN: 0002-9483

DOI: 10.1002/ajpa.23803

Abstract:

Objectives: This article assesses best practices for producing 3D digital cranial models through structure-frommotion (SfM) photogrammetry, and whether the metric accuracy and overall presentation of photogrammetric models are comparable to physical crania. It is intended to present a user-friendly standard method of creating accurate digital skeletal models using Agisoft PhotoScan.

Materials and methods: Approximately 200 photographs were taken of three different crania, and were separated into series consisting of 50, 75, 100, 150, and approximately 200 photos. Forty-five cranial models were created using different photo series and a variety of PhotoScan settings. These models were assessed based on defined qualitative criteria, and model measurement estimates were compared with physical skeletal measurements using Bland–Altman plots.

Results: The majority of all models (37/45) produced measurement estimates with mean differ- ences of 2 mm or less regardless of PhotoScan settings, and therefore demonstrated high levels of agreement with the physical measurements. Models created with 150 photographs and on “high” PhotoScan settings scored the highest in terms of qualitative appearance in the shortest amount of time.

Discussion: In PhotoScan, it is recommended to create cranial models using 150 photographs and “high” settings; this produces digital cranial models that are comparable to physical crania in both appearance and proportion. SfM photogrammetry is a convenient, noninvasive, and rapid 3D modeling tool that can be used in almost any setting to produce digital models, and following the guidelines established here will ensure that these models are metrically accurate.

https://eprints.bournemouth.ac.uk/32161/

Source: Manual

Standard methods for creating digital skeletal models using structure-from-motion photogrammetry.

Authors: Morgan, B., Ford, A.L.J. and Smith, M.J.

Journal: American journal of physical anthropology

Volume: 169

Issue: 1

Pages: 152-160

eISSN: 1096-8644

ISSN: 0002-9483

DOI: 10.1002/ajpa.23803

Abstract:

Objectives

This article assesses best practices for producing 3D digital cranial models through structure-from-motion (SfM) photogrammetry, and whether the metric accuracy and overall presentation of photogrammetric models are comparable to physical crania. It is intended to present a user-friendly standard method of creating accurate digital skeletal models using Agisoft PhotoScan.

Materials and methods

Approximately 200 photographs were taken of three different crania, and were separated into series consisting of 50, 75, 100, 150, and approximately 200 photos. Forty-five cranial models were created using different photo series and a variety of PhotoScan settings. These models were assessed based on defined qualitative criteria, and model measurement estimates were compared with physical skeletal measurements using Bland-Altman plots.

Results

The majority of all models (37/45) produced measurement estimates with mean differences of 2 mm or less regardless of PhotoScan settings, and therefore demonstrated high levels of agreement with the physical measurements. Models created with 150 photographs and on "high" PhotoScan settings scored the highest in terms of qualitative appearance in the shortest amount of time.

Discussion

In PhotoScan, it is recommended to create cranial models using 150 photographs and "high" settings; this produces digital cranial models that are comparable to physical crania in both appearance and proportion. SfM photogrammetry is a convenient, noninvasive, and rapid 3D modeling tool that can be used in almost any setting to produce digital models, and following the guidelines established here will ensure that these models are metrically accurate.

https://eprints.bournemouth.ac.uk/32161/

Source: Europe PubMed Central

Standard methods for creating digital skeletal models using structure-from-motion photogrammetry.

Authors: Morgan, B., Ford, A. and Smith, M.J.

Journal: American Journal of Physical Anthropology

Volume: 169

Issue: 1

Pages: 152-160

ISSN: 0002-9483

Abstract:

OBJECTIVES: This article assesses best practices for producing 3D digital cranial models through structure-from-motion (SfM) photogrammetry, and whether the metric accuracy and overall presentation of photogrammetric models are comparable to physical crania. It is intended to present a user-friendly standard method of creating accurate digital skeletal models using Agisoft PhotoScan. MATERIALS AND METHODS: Approximately 200 photographs were taken of three different crania, and were separated into series consisting of 50, 75, 100, 150, and approximately 200 photos. Forty-five cranial models were created using different photo series and a variety of PhotoScan settings. These models were assessed based on defined qualitative criteria, and model measurement estimates were compared with physical skeletal measurements using Bland-Altman plots. RESULTS: The majority of all models (37/45) produced measurement estimates with mean differences of 2 mm or less regardless of PhotoScan settings, and therefore demonstrated high levels of agreement with the physical measurements. Models created with 150 photographs and on "high" PhotoScan settings scored the highest in terms of qualitative appearance in the shortest amount of time. DISCUSSION: In PhotoScan, it is recommended to create cranial models using 150 photographs and "high" settings; this produces digital cranial models that are comparable to physical crania in both appearance and proportion. SfM photogrammetry is a convenient, noninvasive, and rapid 3D modeling tool that can be used in almost any setting to produce digital models, and following the guidelines established here will ensure that these models are metrically accurate.

https://eprints.bournemouth.ac.uk/32161/

Source: BURO EPrints