Corrosion performance of nanocomposite coatings in moist SO<inf>2</inf> environment

Authors: Kasar, A.K., Bhutta, M.U., Khan, Z.A. and Menezes, P.L.

Journal: International Journal of Advanced Manufacturing Technology

Volume: 106

Issue: 11-12

Pages: 4769-4776

eISSN: 1433-3015

ISSN: 0268-3768

DOI: 10.1007/s00170-020-04949-z

Abstract:

This paper presents a study of corrosion behavior of electrodeposited Ni, Ni-Al2O3, Ni-ZrO2, and Ni-graphene (Gr) coatings in moist SO2 environment. Nanocomposite coatings were deposited on steel substrate by pulse electrodeposition technique with an average thickness of 9 ± 1 μm. Coatings were characterized by using nanoindentation and scratch tests to measure their mechanical properties prior to conducting corrosion tests. The corrosion resistance of coatings was evaluated according to G87–02 Method B, employing SO2 cyclic spray in the presence of moisture followed by drying. The results indicated that the addition of nanoparticles is beneficial both for enhancing mechanical properties and improving the corrosion resistance of these coatings. Higher surface corrosion resistance was observed for Ni-Gr coating. Corrosion behavior of coating was also quantified by open circuit potential measurement in 0.5 M H2SO4 environment. The results suggest that the nanocomposite Ni coatings have improved corrosion resistance compared to pure Ni coating. This work will bring significant impacts in terms of industrial applications such as architectural, automotive, and marine industries in the presence of S-pollutants because it can cause corrosion either due to acid rain or by the reaction of moisture with dry deposition of sulfur.

https://eprints.bournemouth.ac.uk/33247/

Source: Scopus

Corrosion performance of nanocomposite coatings in moist SO<sub>2</sub> environment

Authors: Kasar, A.K., Bhutta, M.U., Khan, Z.A. and Menezes, P.L.

Journal: INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Volume: 106

Issue: 11-12

Pages: 4769-4776

eISSN: 1433-3015

ISSN: 0268-3768

DOI: 10.1007/s00170-020-04949-z

https://eprints.bournemouth.ac.uk/33247/

Source: Web of Science (Lite)

Corrosion performance of nanocomposite coatings in moist SO2 environment

Authors: Kasar, A., Bhutta, M., Khan, Z. and Menezes, P.

Journal: The International Journal of Advanced Manufacturing Technology

Publisher: Springer Nature

ISSN: 0268-3768

DOI: 10.1007/s00170-020-04949-z

Abstract:

This paper presents a study of corrosion behavior of electrodeposited Ni, Ni-Al2O3, Ni-ZrO2, and Ni-Graphene (Gr) coatings in moist SO2 environment. Nanocomposite coatings were deposited on steel substrate by pulse electrodeposition technique with an average thickness of 9 ± 1 μm. Coatings were characterized by using nanoindentation and scratch tests to measure their mechanical properties prior to conducting corrosion tests. The corrosion resistance of coatings was evaluated according to G87-02 Method B, employing SO2 cyclic spray in the presence of moisture followed by drying. The results indicated that the addition of nanoparticles is beneficial both for enhancing mechanical properties and improving the corrosion resistance of these coatings. Higher surface corrosion resistance was observed for Ni-Gr coating. Corrosion behavior of coating was also quantified by open circuit potential measurement in 0.5 M H2SO4 environment. The results suggest that the nanocomposite Ni coatings have improved corrosion resistance compared to pure Ni coating. This work will bring significant impacts in terms of industrial applications such as architectural, automotive and marine industries in the presence of S-pollutants because it can cause corrosion either due to acid rain or by the reaction of moisture with dry deposition of Sulfur.

https://eprints.bournemouth.ac.uk/33247/

https://link.springer.com/article/10.1007/s00170-020-04949-z

Source: Manual

Corrosion performance of nanocomposite coatings in moist SO2 environment.

Authors: Kasar, A.K., Bhutta, M.U., Khan, Z.A. and Menezes, P.L.

Journal: International Journal of Advanced Manufacturing Technology

Volume: 106

Pages: 4769-4776

ISSN: 0268-3768

Abstract:

This paper presents a study of corrosion behavior of electrodeposited Ni, Ni-Al2O3, Ni-ZrO2, and Ni-Graphene (Gr) coatings in moist SO2 environment. Nanocomposite coatings were deposited on steel substrate by pulse electrodeposition technique with an average thickness of 9 ± 1 μm. Coatings were characterized by using nanoindentation and scratch tests to measure their mechanical properties prior to conducting corrosion tests. The corrosion resistance of coatings was evaluated according to G87-02 Method B, employing SO2 cyclic spray in the presence of moisture followed by drying. The results indicated that the addition of nanoparticles is beneficial both for enhancing mechanical properties and improving the corrosion resistance of these coatings. Higher surface corrosion resistance was observed for Ni-Gr coating. Corrosion behavior of coating was also quantified by open circuit potential measurement in 0.5 M H2SO4 environment. The results suggest that the nanocomposite Ni coatings have improved corrosion resistance compared to pure Ni coating. This work will bring significant impacts in terms of industrial applications such as architectural, automotive and marine industries in the presence of S-pollutants because it can cause corrosion either due to acid rain or by the reaction of moisture with dry deposition of Sulfur.

https://eprints.bournemouth.ac.uk/33247/

Source: BURO EPrints