Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network
Authors: Zhang, J., Chen, S., Guo, X., Shi, J. and Hanzo, L.
Journal: IEEE Transactions on Vehicular Technology
Volume: 68
Issue: 2
Pages: 1916-1929
ISSN: 0018-9545
DOI: 10.1109/TVT.2018.2890640
Abstract:The limited fronthaul capacity imposes a challenge on the uplink of a centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of a massive multiple-input multiple-output (MIMO)-aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs). Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput. However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput. In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise ratio for the massive MIMO-aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming at maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by the RRU and 128 RAs deployed by the BBU, the sum rate of 10 UDs achieved with the optimal power sharing factors improves by 33% compared with the one attained without optimizing power sharing factors.
Source: Scopus
Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network
Authors: Zhang, J., Chen, S., Guo, X., Shi, J. and Hanzo, L.
Journal: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume: 68
Issue: 2
Pages: 1916-1929
eISSN: 1939-9359
ISSN: 0018-9545
DOI: 10.1109/TVT.2018.2890640
Source: Web of Science (Lite)
Boosting Fronthaul Capacity: Global Optimization of Power Sharing for Centralized Radio Access Network
Authors: Zhang, J., Chen, S., Guo, X., Shi, J. and Hanzo, L.
Abstract:The limited fronthaul capacity imposes a challenge on the uplink of centralized radio access network (C-RAN). We propose to boost the fronthaul capacity of massive multiple-input multiple-output (MIMO) aided C-RAN by globally optimizing the power sharing between channel estimation and data transmission both for the user devices (UDs) and the remote radio units (RRUs).
Intuitively, allocating more power to the channel estimation will result in more accurate channel estimates, which increases the achievable throughput.
However, increasing the power allocated to the pilot training will reduce the power assigned to data transmission, which reduces the achievable throughput.
In order to optimize the powers allocated to the pilot training and to the data transmission of both the UDs and the RRUs, we assign an individual power sharing factor to each of them and derive an asymptotic closed-form expression of the signal-to-interference-plus-noise for the massive MIMO aided C-RAN consisting of both the UD-to-RRU links and the RRU-to-baseband unit (BBU) links. We then exploit the C-RAN architecture's central computing and control capability for jointly optimizing the UDs' power sharing factors and the RRUs' power sharing factors aiming for maximizing the fronthaul capacity. Our simulation results show that the fronthaul capacity is significantly boosted by the proposed global optimization of the power allocation between channel estimation and data transmission both for the UDs and for their host RRUs. As a specific example of 32 receive antennas (RAs) deployed by RRU and 128 RAs deployed by BBU, the sum-rate of 10 UDs achieved with the optimal power sharing factors improves 33\% compared with the one attained without optimizing power sharing factors.
Source: arXiv