Predictive and prognostic modelling and simulation of coating failures due to corrosion and mechanical failures

Authors: Khan, Z., Latif, J., Nazir, H., Saeed, A. and Stokes, K.

Start date: 21 June 2017

Publisher: Wessex Institute of Technology

This research presents analytical and mathematical modelling of coating failures within industrial components, structures, mobile assets and systems due to corrosive degradation and mechanical fracture. These failures lead to serval surface problems, therefore contact mechanics and electrochemistry approaches incorporating induced residual stresses have been adopted to develop a comprehensive solution for the prediction prognostic of such failures.

Experimental study of film cracking and its propagation into substrates, interfacial transient behaviours and film-substrate system has been conducted. A parallel study of corrosive degradation to include cathodic delamination, cathodic blistering and tribo-corrosion of films has been conducted. Experimental and analytical studies of induced residual stresses within the coating and their effects on failure mechanisms and propagation have been completed.

A detailed investigation of elastic mismatch at the interfacial contact and interfacial crack tip field has been performed and a complex stress intensity factor is presented. Mathematical derivation of oscillatory singularity, mode mix and interfacial fracture criterion to include adhesion are presented.

This paper presents novel mathematical modelling incorporating interfacial crack propagating, diffusion of corrosive species and cathodic blistering for prediction and prognoses of coating failures.

The data on this page was last updated at 04:54 on March 23, 2019.