Texture organisation and mapping on Citrus sinensis point cloud

This data was imported from Scopus:

Authors: Yang, H.J., Chang, J., Geng, N., Notman, G., Li, S., Jiang, M., Wang, M.L. and Zhang, J.J.

Journal: Multimedia Tools and Applications

Volume: 76

Issue: 13

Pages: 14711-14732

eISSN: 1573-7721

ISSN: 1380-7501

DOI: 10.1007/s11042-016-3998-6

© 2016, Springer Science+Business Media New York. In light of the current problems including coarseness, visible cracks, difficult data organisation, and the expensive memory requirements of the current texture methods, this paper mainly focuses on efficient organisation, linearised memory compression and seamless texture mapping between scanned Citrus sinensis images and point cloud information. Position and colour gradient based top-down splitting is proposed to simplify and organise the texture as texel descriptors to avoid both over-simplification and under-simplification. A Quadtree Morton and Z-order based linearised coding strategy is presented to compress the memory space of our texel descriptor based texture. A Gaussian Markov random field scheme was designed to smooth the ‘cracks’ between neighbouring texels. The simulated results on eight Citrus sinensises show that our simplification method reduces the texture memory requirements by 81.3 % over the original image, and 50 % over conventional simplification. The compression scheme also showed a 61.7 % improvement over the ordinary Morton code. Finally, the Gaussian Markov random field scheme makes the texture mapping smoother in comparison with other methods.

This data was imported from Web of Science (Lite):

Authors: Yang, H., Chang, J., Geng, N., Notman, G., Li, S., Jiang, M., Wang, M. and Zhang, J.

Journal: MULTIMEDIA TOOLS AND APPLICATIONS

Volume: 76

Issue: 13

Pages: 14711-14732

eISSN: 1573-7721

ISSN: 1380-7501

DOI: 10.1007/s11042-016-3998-6

The data on this page was last updated at 04:49 on May 22, 2018.